Year 12 Mathematics EAS 2.7

Robert Lakeland & Carl Nugent

Contents

UULake Ltd
Innovative Publisher of Mathematics Texts

Calculus Methods 2.7

This achievement standard involves applying calculus methods in solving problems.

This achievement standard is derived from Level 7 of The New Zealand Curriculum and is related to the achievement objectives

- ◆ sketch the graphs of functions and their gradient functions and describe the relationship between these graphs
- apply differentiation and anti-differentiation techniques to polynomials.
- Apply calculus methods in solving problems involves:
	- \triangle selecting and using methods
	- ❖ demonstrating knowledge of calculus concepts and terms
	- ❖ communicating using appropriate representations.
- Relational thinking involves one or more of:
	- ❖ selecting and using a logical sequence of steps
	- ❖ connecting different concepts or representations
	- ❖ demonstrating understanding of concepts
	- ❖ forming and using a model;

and also relating findings to a context, or communicating thinking using appropriate mathematical statements.

- Extended abstract thinking involves one or more of:
	- ❖ devising a strategy to investigate a situation
	- ❖ demonstrating understanding of abstract concepts
	- ❖ developing a chain of logical reasoning, or proof
	- ❖ forming a generalisation;

 and also using correct mathematical statements, or communicating mathematical insight.

- Problems are situations which provide opportunities to apply knowledge or understanding of mathematical concepts and methods. Situations will be set in real-life or mathematical contexts.
- Methods include a selection from those related to:
	- ❖ derivatives and anti-derivatives of polynomials given in expanded form
	- ❖ gradient functions
	- ❖ gradient at a point
	- ❖ equation of a tangent
	- \triangleleft turning points where $f'(x) = 0$ and their nature
	- ❖ function from a derived function
	- ❖ rate of change problems (such as kinematics).

The Concept of Gradient

Gradient of a Straight Line

The steepness of a graph is called the gradient. With a straight line the entire line has the same gradient.

With a straight line we calculate the gradient by locating two coordinate pairs in the line and using

Gradient of a Curved Line

With a curved line the steepness or gradient is changing constantly, so we find the gradient at a point by finding the gradient of a tangent at that point.

The Derivative from First Principles

EAS 2.7 – Year 12 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

The Reverse of Differentiation – Anti-differentiation

Anti-differentiation

Differentiation produces a rate of change or gradient function.

If we start with a derivative or rate of change function and reverse the process, we get the anti-derivative (or integral).

We examine a derivative to identify the process.

For $f(x) = ax^n$

Then $f'(x) = nax^{n-1}$

We multiply by the old power and reduce the power by 1.

In reverse this becomes

Increase the power by one and divide by the new power. For the derived function

 $f(x) = \frac{b}{m+1} x^{m+1} + C$

$$
f'(x) = bx^m
$$

The anti-derivative is

For example if

 $f'(x) = x^3$

then $f(x) = \frac{1}{4}x^4 + C$

or if $g'(x) = 8x - 3$

then $g(x) = \frac{8}{1+x^2}$

$$
= 4x^2 - 3x + C
$$

 $x^{1+1} - \frac{3}{x}$

 $0+1$

 $x^{0+1} + C$

 $1+1$

We need to add a constant, C, every time we find an anti-derivative as when we differentiate a constant it goes to zero so when we are finding the antiderivative we are no longer able to determine the value of any constant.

We sometimes use the ∫ symbol to show we are finding the anti-derivative.

$$
f(x) = \int f'(x) dx.
$$

Indefinite Integral

The process of anti-differentiating is also called integration. The symbol ∫ is used to denote the integral and dx (which comes from Leibniz notation) tells us which variable we are finding the anti-derivative of. For example if $F(x)$ is defined as the integral of $f(x)$, then

$$
F(x) = \int f(x) dx
$$

It is expected in NCEA 2 that references to this process will be referred to as anti-differentiation and the term integration will not be used.

The constant of integration

Any constant when differentiated is zero, so when anti-differentiating it is not possible to identify any constants. Demonstrating this, if The constant

the power by 1.

Any constant when d

anti-differentiating it

any constants.

Demonstrating this, i

f(x) =
 $f'(x) =$

Therefore if we start

know the correct anti-
 $f(x) = 3x^2 + 4x + 19$, f(x)

$$
\frac{1}{2}
$$

$$
f(x) = 3x^2 + 4x + 19
$$

f'(x) = 6x + 4

and if
$$
f(x) = 3x^2 + 4x - 43
$$

 $f'(x) = 6x + 4$

Therefore if we start with $f'(x) = 6x + 4$ we do not **know the correct anti-derivative. It could be** $f(x) = 3x^2 + 4x + 19$, $f(x) = 3x^2 + 4x - 43$ or $f(x) = 3x^2 + 4x +$ any constant.

Therefore every time an expression is anti-differentiated a constant , usually C, is added at the end. know the correct anti-derivative. It could be
 $f(x) = 3x^2 + 4x + 19$, $f(x) = 3x^2 + 4x - 43$ or
 $f(x) = 3x^2 + 4x + 19$, $f(x) = 3x^2 + 4x - 43$ or
 $f(x) = 3x^2 + 4x + 19$ constant.

Therefore every time an expression is
 $f(x) = 3x^2 + 4x$ x² + C
 $f(x) = 3x^2 + 4x + 19$, $f(x) = 3x^2 + 4x - 43$ or
 $f(x) = 3x^2 + 4x + 19$, $f(x) = 3x^2 + 4x - 43$ or
 $f(x) = 3x^2 + 4x + 19$, $f(x) = 3x^2 + 4x - 43$ or
 $f(x) = 3x^2 + 4x + 19$, $f(x) = 3x^2 + 4x - 43$ or
 $f(x) = 3x^2 + 4x + 19$, $f(x) = 3x^2$

Merit and Excellence Questions

a) What are the x-ordinates of its turning points?

54

Practice External Assessment Task Calculus Methods 2.7

Make sure you show ALL relevant working for each question. You are advised to spend 60 minutes answering this assessment.

QUESTION ONE

Page 14 27. $f'(x) = 2x + 2$ **28.** $f'(x) = 2x - 6$ **29.** $f'(x) = 5 - 2x$ **30.** $f'(x) = 2x + 3$ **Page 15 31.** $f'(x) = 3x^2$ **32.** $f'(x) = -3$ **33.** $f'(x) = -4x - 1$ **34.** $f'(x) = 6x^2 - 1$ **35.** $f'(x) = 20x$ 36. $f'(x) = 8x - 5$ **37.** $f'(x) = 2x + 1$ **38.** $f'(x) = 2x - 7$ **Page 17 39.** $f'(x) = 15x^2$ 40. $f'(x) = 9$ 41. $f'(x) = 0$ 42. $f'(x) = 2x + 3$ 43. $f'(x) = 4x$ **44.** $f'(x) = 10x - 10x^4$ 45. $f'(x) = 15x^2 + 4x$ **46.** $f'(x) = 10x + 10$ **47.** $f'(x) = 55x^{10} - 45x^4$ 48. $f'(x) = x - 2$ **49.** $f'(x) = \frac{1}{2}x - \frac{1}{5}$ **50.** $f'(x) = 2x^2 - \frac{1}{4}$ **51.** $f'(x) = 2x^3 - 0.75x^2$ **52.** $f'(x) = 1.2x^5 + 0.9x^2 - 1.5$ 53. $f'(x) = 1.5x^2 + 0.6x - 0.8$ **54.** $f'(x) = 6x^4 + 7x - 1.4$ **55.** $f'(x) = \frac{3x}{2} - \frac{1}{5} - \frac{x^2}{2}$ **56.** $f'(x) = \frac{10x^4}{3} - 3x^3 - \frac{6x^2}{5} + 8x - 2$ **57.** $f(x) = x^2 - 2x - 15$ $f'(x) = 2x - 2$ **58.** $f(x) = x^3 - 2x^2 + 5x - 10$ $f'(x) = 3x^2 - 4x + 5$ **59.** $f(x) = 3x^4 + 5x^3$ $f'(x) = 12x^3 + 15x^2$ **60.** $f(x) = x^4 - 2x^2 - 35$ $f'(x) = 4x^3 - 4x$